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Abstract  

The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave 
by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the 
boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving 
the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a 
viscous double-layer potential is defined. The properties of all these potentials are investigated.  

By representing the scattered field as a combination of a single-layer viscous potential and a double-layer 
viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type 
of the second kind.  

In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary 
singular integral equation is proved to have a unique solution.  
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0. Introduction  

The first of the two articles dedicated by Kress to acoustic scattering in [1] starts with the sentence: 
“Mathematical acoustics is concerned with the modeling of sound waves considered as small perturbations in 
fluid (or gas)”. For classical mathematical acoustics a more precise assertion has to be made by changing the 
word “fluid” to “inviscid fluid”. Thus, in most papers dedicated to acoustic scattering, the basic equation is the 
scalar Helmholtz's equation satisfied by pressure in the case of time harmonic acoustic waves in inviscid 
(nonviscous) fluids. This approach resulted in a lot of theoretical and practical results included in classical books 
by Morse and Ingard [2] and Pierce [3]. Theoretical classical and modern results connected to direct and inverse 
scattering problems are presented in the excellent book by Colton and Kress [4]; an update and a reproduction in 
more compact form of the main facts contained in this book are included in the chapters authored by Kress in [1]. 
The linearity of the basic equation and the infinity of the domain, involved in many applications, made the 
Boundary Integral Method the most suitable mathematical instrument for approaching classical acoustical 
problems and, correspondingly, the Boundary Element Method as a powerful tool in computational acoustic 
analysis. There are a lot of books covering all the aspects of the problem including detailed discussions of the 
basic theory, numerical algorithms and practical engineering applications [5] and [6].  

The technology of micro-electro-mechanical systems (MEMS) has raised the problem of study of the motion of 
gases at microscale geometries (microfluidics). Thus, when the dimensions of the body are of the order of the 
boundary layer thickness (as is the case of microphones built in MEMS technology) the viscous effects cannot be 
neglected. The same is the case for underwater acoustic waves which we expect to be strongly influenced by the 
water viscosity. These are sufficient reasons to justify the development of a viscous acoustic scattering theory 
based on the linearization of the equations for the motion of viscous fluids.  

The inclusion of viscous effects in acoustics is a subject not very often approached. The book by Pierce [3] 
contains a chapter discussing the dissipative processes devoted especially to explain attenuation of sound 
waves. In Ref. [7] a solution is given to the problem of diffraction of a plane sound wave by a grating in the case 
of a viscous compressible fluid having important applications in MEMS. Finally, Ref. [8] gives a solution to the 
problem of the viscous scattering of a pressure wave by an artificial hair-like biomimetic acoustic velocity sensor 
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allowing the calculation of the fluid tractions on the sensor.  

The important difference in mathematically approaching viscous acoustics as compared with the classical 
nonviscous case is associated with boundary conditions: in the classical case the single condition on a hard 
(rigid) body is the canceling of the normal derivative of the total pressure on the body's surface, describing in fact 
the nonpenetration of the air particles through the solid boundary; in the viscous case, the commonly used 
condition is the nonslip condition asserting that the fluid particles are sticking on the body's surface. 
Consequently, instead of working with the pressure as the main unknown function we have to use the velocity 
components. As a result instead of a scalar function we have to determine a vectorial field.  

Section 1 starts with the derivation of the basic equation satisfied by the velocity field in the case of the linearized 
form of Navier–Stokes equations for compressible isentropic flow in the case of a harmonic dependence in time. 
This way the pressure is eliminated from the problem by means of the continuity equation. Once the velocity field 
is determined, the pressure can be obtained directly from the continuity equation. Afterwards, the viscous 
scattering problem is formulated and a uniqueness theorem is proved. The scattering problem is in fact an 
exterior Dirichlet-type problem for the system of partial differential equations equivalent to the basic equation of 
viscous acoustics.  

Section 2 is dedicated to studying the properties of the viscous acoustic single- and double-layer potentials. The 
approach is classical: reciprocal relationships of Lorentz type, fundamental solution and the Green's formulas for 
bounded and unbounded domains. Viscous acoustic potentials of single and double-layer are defined and their 
properties are presented. By using a representation of velocities in terms of the single-layer potential and a 
double-layer potential a singular (vectorial) integral equation of Fredholm type of the second kind on the 
boundary of the body is obtained. In Section 3 the singular integral equation satisfied by traction (surface force) 
on the boundary is studied. By using some results from the theory of 2D singular integral equations it is proved 
that the corresponding singular integral equation has a unique solution.  

There results that the viscous acoustic scattering problem is well-posed. Its solution can be obtained by solving 
the singular (vectorial) integral equation obtained in the case where the physical stress is considered. Having 
proved that the integral equation is uniquely solvable its solutions can be obtained by using some specific 
numerical methods.  

In order to facilitate the reading of the paper the most important results of the theory of 2D singular integral 
equations, used in paper, are added in an Appendix.  

1. Viscous effect in acoustic waves  

1.1. The equations of the motion of a compressible viscous fluid  

The motion of a viscous fluid is described by the continuity equation 

(1)

and the momentum equation

(2)

and “a state” equation. Here V′ denotes velocity, ρ′ is density and the stress operator Σ′ has the components

(3)
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Also, μ and μB are the shear and bulk viscosities [3] and P′ is the pressure. 

In the case of isentropic flow the density is a function of pressure alone such that the state equation can be 
expressed as 

ρ′=ρ′(P′), (4)

where

(5)

c′ being the isentropic speed of sound. By using formulas (4) and (5) the continuity equation can be written as

(6)

For a viscous fluid we have usually the nonslip boundary condition

V′(x,t)=0 (7)

on any immobile solid surface. It is to be noticed that in some cases (as in the case of a slightly rarefied 
compressible gas) the first-order slip velocity conditions at solid boundaries are considered instead of nonslip 
conditions(7). 

1.2. The equations of the motion of a viscous fluid in linear acoustic approximation  

Acoustic disturbances are usually regarded as small-amplitude perturbations to an ambient state [2] and [3]. For 
the fluid the ambient state is characterized by the constant values (P0,ρ0,V0). In the case where the coordinate 
system is chosen so that the unperturbed fluid is at rest V0=0 and the dependent variables can be written as 

where V″, P″ and ρ″ represent the perturbations of velocity, pressure and density. The acoustic approximation of 
the flow equations are obtained by neglecting the product of perturbations. Eq. (6) then becomes

(8)

where  is the unperturbed isentropic speed of sound. Also, Eq. (2) can be written as

(9)

Consider now the case where all the physical variables are harmonic in time with the same angular frequency 
ω=2πf. The case of general time dependence can be obtained, after analyzing each frequency separately, by 
Fourier superposition. In the case of simple harmonic oscillations in time the pressure and velocity perturbations 
can be written as 

{P″(x,t),V″(x,t)}={P(x),V(x)}exp(-iωt).
Eqs. (8), (9) become
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(10)

(11)

where P and V denote the amplitudes of the pressure and velocity perturbations and σ=σ(P,V). The physical 
stress operator σ, taking into account the relationship (10), can be written as

(12)

where 

Also, the kinematic viscosities have been denoted by ν and ν′: 

The system of Eqs. (10), (11) yields the following equation for the pressure:

[Δ+k2]P=0, (13)

where 

and the velocity field's equation

μΔV+(λ+μ) ·V+iρ0ωV=0. (14)

Since  by applying to Eq. (14) the operator [Δ+k2] there results the basic equation

[Δ+k2][Δ+k*2]V=0, (15)

where 

Despite the compact form of the basic equation we prefer to use the system of Eqs. (10), (11) and (12) which 
contains all the physical variables V,P,σ. 

1.3. The direct scattering problem  

The viscous scattering of time-harmonic acoustic waves by a rigid bounded obstacle is modeled by the 
following problem: Given an incident field (Pin,Vin) satisfying the system (10), (11) in some domain containing , 
find the scattered field (ps,vs) as a radiating solution to the system (10), (11) in such that the total velocity 
field  

V=Vin+vs

satisfies the boundary condition V=0 on ∂D. 

Here ∂D denotes the boundary surface of the domain D, assumed of class C2. 

 

1.3.1. The incident field  
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The incident field can be an incoming plane pressure wave 

(16)

where m is the unit vector of the propagation direction of the wave. It can be verified directly that the function Pin

(x) satisfies the pressure equation (13). Also, Eqs. (10) and (11) provide the corresponding velocity field as

(17)

where it has been denoted by 

In other problems the incident fields can characterize a point source in the domain . 

Clearly, the direct scattering problem is in fact a special exterior Dirichlet problem for the bounded domain D: 

Find a vectorial field , solution of the basic equation

(18)

that satisfies the boundary condition 

(f being a continuous vectorial field defined on ∂D) and vanishing at infinity at least like 1/|x|. 

1.3.2. The uniqueness theorem  

Theorem 1  

In the case we have 

(19)

the exterior Dirichlet problem for Eq. (18) has at most one solution. 

We must show that the homogeneous boundary condition v=0 on ∂D implies that v vanishes identically. Denote 

 and . Then 

But 

Hence 

whereby ti=σijnj was denoted by the traction on the surface, and by n the outer normal unit vector. Substituting σij 

by its expression given by Eq. (12) there results
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By virtue of (19) the integral over ∂Ωr tends to zero when r→∞. Therefore, the limit of the right-hand side and 

hence the limit of the left-hand side exist and are equal. Taking the real part in the resulting relationship we 
obtain for the homogeneous problem,

(20)

Now, by using the inequality |z1+z2+z3|2 3(|z1|2+|z2|2+|z3|2) there results 

Finally, formula (20) becomes 

Hence |eij|=|∂vi/∂xi|=0. Taking into consideration the boundary conditions there results v≡0 in . 

2. Green's formula and viscous acoustic layer potentials  

2.1. The reciprocal identity  

Since the incident field (Pi,Vi) satisfies the basic equations system (10)+(11) the scattered field (ps,vs) will be the 
solution of the system 

(21)

(22)

where

(23)

is the stress operator. 

Let us assume that (u,p) and (u′,p′) are two solutions of Eqs. (21), (22) and (23) with the associated stress 
tensors σ and σ′, respectively, and compute 

(24)

Interchanging the roles of u and u′ there results

(25)
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Subtracting (25) from (24) we find 

This yields the reciprocal identity

·(u′·σ-u·σ′)=0 (26)

known as Lorentz’ formula in fluid mechanics [10] and Betti's formula in linear elasticity [11]. 

Another form of reciprocal identity can be obtained by integrating (26) over a fluid domain D bounded by the 
closed surface ∂D and then using the divergence theorem  

where f=σ·n and f′=σ′·n are the surface forces (tractions) exerted on ∂D, and n is the unit normal vector pointing 
outside D. 

2.2. The fundamental solution  

To determine the fundamental solution of Eq. (18) we consider the equation 

(27)

b being a constant vector and δ(x) the Dirac's function. 

By taking the Fourier Transform of Eq. (27) there results 

(28)

Here α=|α| and 

Eq. (28) yields 

and

By using the formulas 
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there results

vi=Sijbj, (29)

where

(30)

2.3. Stress tensor corresponding to the fundamental solution  

Substituting the fundamental solution (29) into the expression of the stress (12) there results 

σij[v]=Tiqjbq, (31)

where

(32)

2.4. The Green's formula (bounded domain)  

The Lorentz reciprocal formula (26) yields  

Identifying 

where 

Sij(x0,x)=Sij(x-x0),

Tijq(x0,x)=Tijq(x-x0),

and discarding the arbitrary constant b there results

(33)

The relationship (33) is integrated over the domain D. In the case the point x0 is selected outside D ∂D the 

function within the square bracket in (33) is regular in D and using the divergence theorem there results
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(34)

where nq=nq(x) and ds=dS(x). In (34) as well as in all subsequent equations, the unit normal vector n is directed 

outside the domain D. 

In the case where the point x0 is selected in the interior of the domain D and Σ  denotes the surface of the 
sphere of radius  centered at x0, the function within the square bracket in (33) is regular through the domain 
bounded by the surfaces ∂D and Σ  and there results  

which can also be written as

(35)

In the last integral in this equation the change of variables ,  
will be performed. As →0, the values of u and σ over Σ  tend to their corresponding values at the center of the 
sphere, u(x0) and σ(x0), respectively. Therefore,

Substituting the expressions of  and  and using the relationship 

there results

Finally, the relationship (35) becomes

where t=σ·n is the traction (surface force) on ∂D and

(36)
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There results

(37)

Here we have denoted n′=n(x′) and ds′=dS(x′). Eq. (37) provides a representation of a flow in terms of boundary 
distributions involving the tensors S and K. 

Remark 1  

In the case where the point x ∂D the second integral in formula (37) is not convergent (as an improper 
integral); since it results by taking the limit when the radius of the small excluded sphere →0 it has to be 
considered in the sense of a principal value (see Appendix A).  

2.5. The Green's formula (unbounded domain)  

In the case where the flow domain coincides with we write 

V(x)=Vin(x)+v(x),
where 

Also denote by  the sphere of radius R centered at the origin. By applying formula (37) to the function v(x) 
and the domain delimited by the surfaces ∂D and there results

the unit normal vector n′ being directed outside domain D. But 

Finally, the Green's formula for the infinite domain has the form
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(38)

2.6. Viscous acoustic layer potentials  

The general representation formulas (37) and (38) for the solution of the basic equation (18) suggests the 
introduction of viscous acoustic layer potentials. These potentials will be defined in close analogy with the 
acoustic layer potentials [1] and [9].  

2.6.1. Viscous acoustic single-layer potential  

Given an integrable vector field  the vectorial integral u(x) of components

(39)

is called a viscous acoustic single-layer potential of density . It is a solution of the basic equation (18) in D and 
 and is vanishing at infinity. Physically, the viscous acoustic single-layer potential gives the velocity field 

corresponding to a stress force (traction) along the surface ∂D given by the function (x′). 

By using the formulas 

exp(ik*|x|)=1+ik*|x|+O(|x|2), (40)

(41)

we can write 

where the singular part can be written as

and the regular part is

The singular part  has only integrable singularities of the same type as the simple-layer harmonic 
potential. Therefore, the regularity and jump relationships for the solutions for the viscous acoustic single-layer 
potential will be similar to those corresponding to the harmonic single-layer potential. For example, in the case 

C0(∂D), the viscous acoustic single-layer is a continuous vector in the whole space. 

Let x be a point in space, and a small area element with n as the direction of the normal. Then, the stress vector 
acting on this area element corresponding to the displacement field given by a single-layer potential can be 
written in the form  
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(42)

2.6.2. Viscous acoustic double-layer potential  

The viscous acoustic double-layer potential, of integrable density , is the vectorial field v having the 
components 

(43)

Physically, the double-layer potential represents the velocity field in the entire space, produced by the 
concentrated moment (x′) on the surface ∂D with normal n′. The vectorial field v is a solution of the basic 
equation (18) in D and  and is also vanishing at infinity. 

Using again the formulas (40) and (41) we can separate the singular and regular components of the kernel  

where

(44)

(45)
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In the case ∂D C2 we have  

|n′·(x′-x)| c|x′-x|2

for all x′,x ∂D and some positive constant c depending on ∂D (see, for example, [9, Theorem 2.2]). 
Consequently, the first term in (44) yields an integral operator with weakly singular kernel. The second term, in 
general case, has a nonintegrable singularity for x=x′ ∂D and, correspondingly, the direct value of the double-
layer potential (appearing in the middle case in formulas (37) and (38)) can be understood only as a principal 
value integral. 

Now, the general representation formula (38) can be used for determining the limit values of the generalized 
double-layer potential on the point x0 ∂D. 

(46)

where we denoted 

Here the continuity of the incoming velocity field and of the single-layer potential across the surface ∂D has been 
used. By eliminating Fi(x0) between formulas (46) there results the limit values of the generalized double-layer 

potential along the surface ∂D:

(47)
where by v0(x0) the vector of components 

has been denoted. In the general case the integrals in this formula have to be considered as 2D principal value 
integrals. 

2.6.3. Limiting values of the stress operator for a single-layer potential  

The following relationship between the kernel of the double-layer potential (36) and the kernel of the integral 
relationship giving the generalized stress operator applied to the single-layer potential (42) proves true:  

Since matrix  is obtained from matrix Kji(x
′,x,n)  by interchanging the points x and x′ and by 

transposing the elements it will be called the conjugate to Kij . 

Let now x0 ∂D, n0 the normal unit vector (pointing outside domain D ) at the point x0, and the points 
 and  on the normal n0 in close proximity of the surface ∂D. We can consider the stress 

vectors generated by the single-layer potential in the points  and the direction n0. Then  
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Due to the above noted conjugation the integral 

can be considered only as a principal value. 

We can write 

(48)

By introducing a local system of coordinates and using some estimates similar to those for a harmonic potential it 

can be shown that the first integral in (48) is continuous for .The second integral is a double-layer 
potential. Finally we obtain the formulas 

2.6.4. Limiting values of the stress operator for a double-layer potential  

The limiting values of the stress operator of a double-layer potential t+[K,n0](x0) and t-[K,n0](x0) are connected 
by the Lyapunov–Tauber theorem: if the limiting value of the stress operator for a double-layer potential exists on 
one side of the surface ∂D, the limiting value exists on the other side as well and these limiting values coincide. A 
proof for this theorem can be found in [12].  

2.6.5. A summary of the jump relationships  

We have 

(49)

for the viscous acoustic single-layer potential, and

(50)

for viscous acoustic double-layer potential. 

2.6.6. Single- and double-layer operators on ∂D  

We define the viscous acoustic single-layer operator (S )(x) by its components 

The corresponding generalized traction operator (K* )(x) has the components 

Similarly, the generalized viscous acoustic double-layer operator (K )(x) has the components 

In terms of these operators the jump relations (49) and (50) yield in the case of continuous densities 

(51)

By interchanging the order of integration there results that the operator S is self-adjoint and the operator K* is the 
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adjoint of K with respect to the L2 vector bilinear form on C(∂D). 

3. Determination of the traction on the body in the direct viscous scattering problem  

In many problems involving the interaction of waves with obstacles the main physical element of interest is the 
traction (stress vector) on the body. In this section a method for determining directly the traction on the body by 
means of a 2D singular integral equation will be presented. It is to be noted that the viscous acoustic double-
layer operator (K )(x) is a singular operator.  

The representation of the velocity field as a combination of a viscous acoustic double-layer potential and a 
simple-layer potential, by means of the coupling parameter η>0 

(52)

yields the singular vectorial integral equation

+K +ηS =2f. (53)
In fact (53) is a system of singular integral equations. The system can be written as

(54)

where the regular terms of Kij and ηSij were included in . 

3.1. Extension of the Fredholm alternatives to the system of singular integral equations (54)  

At the point x ∂D we introduce a local system of coordinates with the ξ1 and ξ2 axes taken in the tangent plane 
and the ξ3 axis in the direction of an external normal. The unknown vector (x) is also projected on this system 
and its component denoted by ( 1, 2, 3). The system (54) becomes  

Here Ti(ξ) are regular operators. By writing  the symbol matrix is 

where a=μ/[2(λ+2μ)]. By calculating the determinants δ1,δ2,δ3 defined in Appendix A there results 

Since all the moduli of minors are bounded from below by  the system of singular integral equations has an 
equivalent regularizing operator and the given singular system can be turned into a regular one. Hence, the 
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Fredholm theorem does apply to the system (54). 

3.2. The existence of the solution of Eq. (53)  

Consider the homogeneous equation 

+K +ηS =0. (55)
In the case we use the representation (52) of the solution, the corresponding velocity field satisfies Eq. (18) in 

 and also the conditions

(56)

Then, we can write

(57)

But according to Eq. (22) the first term in the right-hand side of Eq. (57) becomes

(58)

and the second term can be written as

(59)

By using the relationships (57), (58) and (59) there results

The integral over domain D gives

Taking the real part and using also the conditions (56) there results

But 

By adding the last two relationships there results 
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Hence, ≡0. Since the homogeneous equation (55) has only the trivial solution and the Fredholm's Alternative 
does apply, it follows that the equation (53) has a unique solution for each continuous function f. 

3.3. The integral equation for the traction on the solid body  

The method we used in the last section for obtaining the solution of the direct viscous scattering problem can be 
considered as an indirect method since it furnishes firstly the density , the velocity field being obtained 
afterwards by means of the representation formula.  

A direct boundary integral approach of the viscous scattering problem is based on the Green's representation 
formula (37) which gives 

(60)

Here we have used the boundary condition V=0 on the surface ∂D. This way the solution is expressed by means 
of a viscous acoustic single-layer potential with the density equal to the physical traction on the body's surface t:

S[t]=2Vin(x). (61)

On the other hand, by applying the traction operator to the relationship (60) in domain D we obtain by using the 
second relationship (51)

t+K*[t]=2t[Vin] (62)

for the physical traction on surface ∂D. Linearly combining Eqs. (61) and (62) there results

t+K*[t]+ηS[t]=2t[Vin]+2ηVin. (63)

Thus, we have obtained a singular integral equation of the second kind for determining the traction on the 
surface ∂D. It is to be noticed that Eq. (63) is the adjoint of the singular integral equation (53). We have proved 
that Eq. (53) is uniquely solvable. There results that Eq. (63) is also uniquely solvable. The advantage of Eq. (63) 
is that it directly furnishes the traction (stress vector) on the boundary surface ∂D. 

4. Conclusion  

This paper presents a theoretical framework for the acoustic scattering problem in a viscous fluid. The tractions 
(surface force) over the body's surface can be determined directly by solving a vectorial singular integral 
equation which is uniquely solvable.  

The paper can set up the foundation for future numerical implementation.  
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Appendix A. 2D principal value integrals and singular integral equations  

A.1. Definition of 2D principal-value integrals  

Let Ω denote a bounded domain in the plane x3=0, , r=|x-x′|, , 
. Also denote Ω =Ω (r< ). We consider singular integrals of the form  

supposing that the limit does exit. Such an integral is called a principal value integral, the bounded function f(x,θ) 

is the characteristic of the singular integral and u(x′) is a density function supposedly Hölderian. It should be 
noted that a principal value integral differs from an improper integral in that the form of the excluded domain is 
not arbitrary. The ratio

(64)

is the kernel of the singular integral. 

In order to obtain the conditions for the existence of the principal value integral we write 
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a being an arbitrary positive number. The first integrals are absolutely convergent and the last one can be written 
as

Thus, the limit of the last term exists if and only if

(65)

and the formula for calculating the principal part integral becomes

The above definition can be extended to the case where the integration is carried out over an arbitrary surface 
. Let  be the point at which the integrand has a second-order singularity. We consider the 

normal to the surface  and form a circular cylinder, of radius ε, having the normal as the axis of rotation. 
Denote by sε the part of the surface enclosed in the cylinder. We take now the orthogonal projection of the 
surface sε onto the tangential plane to the surface passing through the point x. Note that the mapping given by 

the orthogonal projection is conformal at the point x. Denoting by x″ the projection of the point x′ and by  the 
disk |x″-x| ε we can write 

But 

Hence, by a principal value integral over the surface , we mean the expression

A.2. 2D singular integral equations  

Consider a singular integral equation 
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(66)

where kS(x,x′) is the singular kernel defined by formula (64) and kR(x,x′) is a regular kernel. In the case where 
the operator kS(x,x′) is missing, the integral equation (66) is called regular. One of the main differences between 
the two types of equations is that while the usual iteration method for regular equations reduces the unbounded 
operators to bounded ones it fails to do so in the case of singular equations. In other words, the direct iteration 
method is not working for singular integral equations. 

The usual approach to solving Eq. (66) consists in finding an integral operator B, of the same type as A, such 
that the classical Fredholm theory will apply to the equation 

BAu=Bg. (67)
The operator B is called a regularizing operator. The important problem is to find a regularizing operator such 
that Eq. (67) is equivalent to the initial one (66). 

For a class of singular operators, including the operators entering in our paper, Mikhlin [13] has developed a 
procedure, based on a symbolic calculus of singular integrals, for determining a regularizing operator yielding an 
equivalent equation to (66). Let us consider the singular part of Eq. (66): 

(68)

We expand the characteristic into a Fourier series 

where the b0 term is missing due to condition (65) involved in the definition of the principal integral. The symbol 

of singular operator is the complex value function φ(x,θ) defined by relationship 

where 

It should be noted that the regular terms do not have any influence on the symbol. It is clear that the symbol of 
an operator is determined completely by its characteristic; conversely once the coefficients an are known we can 
determine the coefficients bn resulting this in the operators’ characteristic (up to a regular operator). The symbol 

corresponding to the sum of two singular operators is the sum of the corresponding operators and the symbol of 
the composition of two principal part singular operators is the product of their symbols. 

To obtain a regularizing operator for the operator A we determine its symbol φ(x,θ). In the case  

φ(x,λ)≠0
for all x and λ we can define the symbol of the regularizing operator as

The theory for singular integral equations can be extended to systems of singular equations. The characteristics 
of the system can be written as a matrix; this yields the symbol of the system which is the matrix formed with the 
symbols of each element. 
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The condition for obtaining a regularizing operator is that the determinant of the symbol matrix Φ should be 

different from zero for all values of x and λ and a regularizing operator is Φ-1. According to a theorem in [14, 
Theorem 5.2, p. 379] a sufficient condition for a system of singular integral equations to have an equivalent 
regularizing operator is that the moduli of the minors

(69)

are to be bounded from below by a positive constant. In other words, in the case where the conditions (69) are 
satisfied the Fredholm theory applies to the regularized system. 

All this discussion supposed that the integrating domain is carried out over a plane domain. Taking into 
consideration the definition of the principal part integrals for arbitrary surface  it can be extended to the 
case where the integrals are carried out over a general surface.  

Finally, we note that the fulfilling of the above conditions is unaltered by a change of variables.  
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